If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+75x=0
a = 7; b = 75; c = 0;
Δ = b2-4ac
Δ = 752-4·7·0
Δ = 5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5625}=75$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(75)-75}{2*7}=\frac{-150}{14} =-10+5/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(75)+75}{2*7}=\frac{0}{14} =0 $
| 5x-10x=-45 | | 6(2)x+5= | | 6x+2x+13=85 | | 6x+2x+13=41 | | 2x-8x=66 | | x^2+2x+C^2=0 | | 4(c−16)=−44 | | 3x•3=20 | | 6/10=x100 | | 3-1/5x=9 | | z÷3=-15 | | z/6+4=-67 | | -2x=7x-36=69 | | (1*4)+x=(x*3)+7 | | z/5+9=-77 | | z/5+9=77 | | k/6+5=19 | | 12(x+6)=24 | | -44+5x-x=36 | | /(5x+9)(5x−9)=0 | | k/6+5=9 | | 4(x+1)=3(x+7) | | 2(2x-11)+3x=-1 | | -4u+47=5(u+5) | | 5d+3=48 | | 3.4(8a+12)=25.8 | | -7v+4(v+6)=30 | | 6d+3=45 | | 3.00=0.5b | | 18-h+4=22-6 | | h()=4 | | /2x=4 |